Likelihood Inference of Some Cure Rate Models and Applications
نویسنده
چکیده
In this thesis, we perform a survival analysis for right-censored data of populations with a cure rate. We consider two cure rate models based on the Geometric distribution and Poisson distribution, which are the special cases of the Conway-Maxwell distribution. The models are based on the assumption that the number of competing causes of the event of interest follows Conway-Maxwell distribution. For various sample sizes, we implement a simulation process to generate samples with a cure rate. Under this setup, we obtain the maximum likelihood estimator (MLE) of the model parameters by using the gamlss R package. Using the asymptotic distribution of the MLE as well as the parametric bootstrap method, we discuss the construction of confidence intervals for the model parameters and their performance is then assessed through Monte Carlo simulations.
منابع مشابه
Statistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملInference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملA General Transformation Class of Semiparametric Cure Rate Frailty Models
We consider a class of cure rate frailty models for multivariate failure time data with a survival fraction. This class is formulated through a transformation on the unknown population survival function. It incorporates random effects to account for the underlying correlation, and includes the mixture cure model and the proportional hazards cure model as two special cases. We develop efficient ...
متن کاملBeta-Linear Failure Rate Distribution and its Applications
We introduce in this paper a new four-parameter generalized version of the linear failure rate distribution which is called Beta-linear failure rate distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a constant, decreasing, increasing and bathtub-shaped failure rate function depending on its parameter...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کامل